

Comments by the American Petroleum Institute

October 3, 2019

Chris Rabideau - Chair API Air Modeling Group

API Supports Improving the Science

- API appreciates EPA's willingness to work with the public to improve the science
- Over the past decade
 - Improving NO/NO₂ chemistry
 - ARM2
 - PVMRM improvements
 - CALPUFF chemistry
 - Low wind speed
 - Building downwash

Topics for Discussion - Summary here, details to be submitted in writing to EPA docket

- NO₂ modeling improvements and evaluations
- Low wind modeling options in AERMOD
- Offshore modeling refinements for AERMOD
- Building downwash refinements for AERMOD
- Modeling of secondary PM_{2.5} and ozone formation
- Other issues for written comments.

NO₂ Modeling Improvements and Evaluations

- We appreciate EPA's efforts in support of further NO₂ chemistry refinements and in development of evaluation databases.
- The PVMRM technique discussed in Hanrahan 1999 mentioned the issue of a finite time needed for the conversion of NO to NO₂
 - Not accounted for in AERMOD
 - Potential for at least a factor-of-2 overprediction of the NO₂/NOx ratio at near-field receptors
 - Beta option for conversion time in next release of AERMOD?
- API continues to work with Cambridge Environmental Research Consultants to finalize a new Tier 3 option for AERMOD, called the Atmospheric Dispersion Model Method (ADMSM).
 ADMSM is an explicit chemistry method that considers both the rate of the chemical reaction between NO and O₃ and the photolysis of NO₂.
 - ADMSM was recently evaluated using a compressor station dataset; further evaluations are planned when a drilling operations dataset becomes available.

NO₂ Modeling Improvements and Evaluations

Compressor Station Dataset

- NO_x evaluation: AERMOD performs well at some monitors
- NO₂ evaluation:
 - PVMRM and ADMSM perform better than OLM; OLM overpredicts
 - PVMRM and ADMSM broadly replicate near-field NO₂/NO_x ratios
 - PVMRM predicts some high NO₂ concentrations exceeding the 'upper bound' OLM values - likely related to entrainment method rather than lack of explicit chemistry
 - ADMSM NO₂ statistics more consistent with NOx than PVMRM; ADMSM shows better performance in ratio plots

Low Wind Options in AERMOD

- Promulgation of ADJ_U* option was helpful, but consideration of minimum turbulence levels is also important.
- Independent research indicates low frequency mesoscale motions (wind fluctuations with periods of 20-30 minutes) exist under all meteorological conditions.
 - These slow mesoscale motions will set a lower limit for turbulence-based dispersion
 - Not accounting for this effect can result in substantial underpredictions of plume dispersion in stable conditions
- As discussed during low wind panel, there are issues with meandering plumes coherent versus pancake plumes. Updates needed to avoid simulating plumes that are too compact.
- Also suggested during low wind panel, EPA should consider a minimum sigma-v of 0.5 m/s and minimum sigma-w of 0.1 m/s (option for a minimum sigma-w could be added to the next version of AERMOD).

Building Downwash Refinements for AERMOD

- AERMOD version 19191 has new algorithms available for testing and evaluation PRIME2 (or "AWMA")¹ and ORD alpha options.
- There is also an alternative Building Profile Input Program that attempts to correct for limitation of BPIP to deal with long and narrow buildings for winds approaching the building corner.
 - This alternative BPIP approach preserves the actual building footprint and has promise to correct the overly large building footprint passed to AERMOD by the current BPIP
- Several investigators have noted that for some existing AERMOD evaluation databases such as Bowline Point and the Alaska North Slope, PRIME2 (and ORD) options overpredict, while PRIME has a lower bias.
- PRIME2 appears to be more sensitive than PRIME to plume rise.
- Building downwash panel updates needed for plume rise, streamlined equations, porous structures.
- More evaluation databases are desired to assess these new options.

Building Downwash Refinements for AERMOD

PRIME2 - CURRENT AND NEW AERMOD BUILDING DOWNWASH THEORY

Offshore Modeling Refinements for AERMOD

- This is a challenging undertaking, since a substantially different meteorological pre-processor formulation is needed for overwater modeling – the AERCOARE program is a candidate.
- Lots of challenges
 - The definition of the shoreline geometry irregular coastlines
 - Inclusion of Thermal Internal Boundary Layer (TIBL)
 - Complex terrain near the shoreline TIBL does not consider complex terrain
 - The inventory of evaluation databases is limited
- Adding this feature to the AERMOD modeling code would make it even more complicated; it already needs a restructuring due to many additions made in the past 25 years.
- Is there a role for API? Are there certain areas that need research/funding?

Modeling of Secondary PM_{2.5} and Ozone Formation

- We appreciate the additional clarifications and inclusion of more hypothetical source locations in the updated April 2019 MERP guidance.
- The ability to use a Tier 1 approach, even if the proposed project's precursor emissions are above the MERPs, is helpful.
- For PM_{2.5} modeling, it is often conservative to assume that the peak impacts from primary and secondary PM_{2.5} are at the same distance.
 - It would be helpful if EPA posted its distance-dependent PM_{2.5} CAMx results for all MERP sites, or at least provides the information on a timely "as requested" basis.
- We look forward to commenting on the draft permit modeling guidance when it is released.

Other Issues Included in Forthcoming Written Comments

- Updates to model evaluation procedures for probabilistic NAAQS EPA needs to adjust the form of the test statistic to match the form of the NAAQS.
- Surface roughness concerns AERMOD is sensitive to input of very low roughness; we support EPA's efforts to consider minimum Monin-Obukhov lengths and less conservative vertical potential temperature gradient parameterizations.
- Permitting is more cumbersome without an approved long-range transport model.
- Modeling of sources with partial utilization and variable emissions Randomly Reassigned Emissions (RRE) – could it be added to AERMOD?
- RLINE and roadway emissions
- Feedback from panel discussions
- Is it time for EPA to consider an eventual replacement of AERMOD?

